Delayed (Optimal) Cord Clamping

In spite of a mountain of evidence to support the benefits of leaving the newborn cord intact, immediate cord clamping is still routine care in many hospitals.  Updated obstetrical guidelines in the UK are to leave the cord intact for at least 1 minute and up to 5 minutes, and to leave it for longer than 5 minutes if requested by the mother (NICE, 2016). The Cochrane Review, considered the highest standard globally in evidence-based health care information, contains countless articles on the benefits of delayed cord clamping. 

The placental blood normally belongs to the infant, and his/her failure to get this blood is equivalent to submitting the newborn to a severe hemorrhage at birth.  (DeMarsh, 1941)

Yes, we’ve known since 1941!  Changing practise takes a long time indeed.

Immediate umbilical cord clamping after delivery is routine…  despite little evidence to support this practice. Numerous trials in both term and preterm neonates have demonstrated the safety and benefit of delayed cord clamping. The failure to more broadly implement delayed cord clamping in neonates ignores published benefits of increased placental blood transfusion at birth and may represent an unnecessary harm for vulnerable neonates.  (McAdams, 2014)

Basic newborn & cord physiology

  • The placenta is nature’s neonatal life-support system
  • Oxygenation continues until newborn lungs transition (30 to 90 seconds in a full-term infant)
  • Placental transfusion (blood moving from placenta to baby’s body) rate: 50% in 1 minute; nearly 100% over the next 2 to 5 minutes
  • “Delayed” in research ranges from 30sec – 3min, depending on the researcher and study
  • The newborn heart can beat and the brain can tolerate of lack of oxygen for up to 20 minutes (Resuscitation Council (UK), 2001; Frye, 2004; WHO, 1999) as long as the cord is intact.
  • Newborns cope well with lack of oxygen but struggle with low blood volume

At time of birth:

  • Blood volume of newborn at birth: 78ml/kg
  • Volume after 3min placental transfusion: 126ml/kg
  • g., 3.6kg (8lb) baby has 280ml – 450ml blood volume – a 40% difference!
  • Adults may go into shock and receive blood transfusions at 15 to 30% blood-loss.

6 umbilical cords   Intact cord – birth to 15minutes (Elphanie, 2011)

Benefits of DCC

Full-term newborns:

  • 40% more blood volume
  • 45-50% increased levels of red blood cell counts and blood iron levels
  • Benefits / effects last well past the newborn period
  • Protection from anaemia and iron deficiency for at least 6 months (Chaparro et al., 2006)

Preterm newborns:

  • Significantly lower rates and less severity of common, major newborn health issues
  • More stable vital signs and thrive better
  • Less likely to require blood transfusion, ventilation and oxygen therapy
  • Lower rates of anaemia at 6 months

Overall, the available evidence appears to suggest that DCC is likely to result in better neonatal outcomes in both term and preterm infants.   (Garafalo, 2012)

Issues related to immediate cord clamping:

  • Stem-cell banking: Alberta Health Services (2007) lists the maximum blood draw for an 8lb baby as 2.5-3.5ml in 24 hours, as more may lead to medical complications.  Green (2008) cites the same daily limit and 23-30ml total in 1 month.
  • The minimum amount of blood acceptable for collection is 45ml, maximum is 215ml; 100ml is optimal (Reed, 2011; CRYO-CELL International Inc., 2011).
  • Jaundice: Leaving the umbilical cord intact does not lead to pathological jaundice. The naturally occurring physiological newborn jaundice has no clinical significance.
  • Cord gases don’t change significantly even after 2 minutes of delayed clamping (De Paco et al., 2011).
  • Dysfunctional cord: If a baby is born flat with a limp, non-pulsing cord then the cord is no longer working.  In this case immediate clamping is warranted.

Does anything replace DCC?

  • Neither “milking”/“stripping” cord, nor gravity accomplish or speed-up full placental transfusion

Objections by your medical care provider?

Dr. Mark Sloan wrote an excellent article, Common Objections to Delayed Cord Clamping; What’s the Evidence Say? that addresses common misinformation and discusses the benefits of delayed cord clamping.

Even the American College of Obstetricians and Gynecologists now recommends a delay in umbilical cord clamping for all healthy infants for at least 30-60 seconds after birth, “given the numerous benefits to most newborns” (ACOG, 2017).  It’s not enough but is a big step forward for ACOG, notoriously interventionist.

 

References

ACOG American College of Obstetricians and Gynecologists. (2017).  Delayed Umbilical Cord Clamping After Birth. Obstet Gynecol 2017;129:e5–10. http://www.acog.org/Resources-And-Publications/Committee-Opinions/Committee-on-Obstetric-Practice/Delayed-Umbilical-Cord-Clamping-After-Birth

Alberta Health Services. (2007). Maximum blood draw protocol for pediatric patients.

Asfour, V., & Bewley, S. (2011). Cord clamping practice could affect the ratio of placental weight to birthweight and perinatal outcomes. BJOG: An International Journal of Obstetrics & Gynaecology., 118 (12), 1539-40.

Buckley, D. S. (2005). Gentle Birth, Gentle Mothering. Brisbane: One Moon.

Chaparro, C. M., Neufeld, L. M., Alavez, G. T., Cedillo, R., & Dewey, K. G. (2006). Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. The Lancet, 367 (9527), 1997-2004.

Crews, C. (2007). Clamping of the umbilical cord – immediate or delayed. Is this really an issue? Retrieved from Midwifery Services of South Texas: http://www.midwiferyservices.org/umbilical_cord_clamping.htm

CRYO-CELL International Inc. (2011). Cord blood collection instructions. Florida.

De Paco, C., Florido, J., Garrido, M., Prados, S., Navarrete, L. (2011). Umbilical cord blood acid-base and gas analysis after early versus delayed cord clamping in neonates at term. Arch Gynecol Obstet , 283 (5), 1011-4.

De Marsh, Q. B., et al. (1941).”The Effect of Depriving the Infant of its Placental Blood.” Journal of the American Medical Association (J.A.M.A.), 116(23):2568-2573. doi:10.1001/jama.1941.02820230012004

Elphanie. (2011, Oct). Magical Umbilical Cords. Retrieved from Nurturing Hearts Birth Services: http://www.nurturingheartsbirthservices.com/blog/?p=1542

Fogelson, D. N. (2011). Delayed cord clamping grandrRounds. USC School of Medicine, A.P. Dept. Obstetrics and Gynecology. South Carolina: Palmetto Health Grand Rounds.

Frye, A. (2004). Holistic midwifery, vol 2, Care during labour and birth. Portland: Labrys.

Garofalo, Milena; Abenhaim, Haim A. (2012). Early Versus Delayed Cord Clamping in Term and Preterm Births: A Review.  J Obstet Gynaecol Can;34(6):525–531.  http://www.jogc.com/article/S1701-2163(16)35268-9/pdf

Greene, A. (2008). How much blood is too much guideline. Retrieved from Dr Greene: http://www.drgreene.com/article/how-much-blood-too-much-guideline

McAdams, R.M. (2014).  Obstet Gynecol. 123(3):549-52. doi: 10.1097/AOG.0000000000000122.

Mercer, J. S., Vohr, B. R., McGrath, M. M., Padbury, J. F., Wallach, M., & Oh, W. (2006). Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemmorhage and late onset sepsis; a randomized, controlled trial. Pediatrics, 117 (4), 1235-1242.

NICE National Institute for Health and Care Excellence (UK). (2016). Clinical guideline [CG190] Intrapartum care for healthy women and babiesPub Dec 2014, revised/updated Nov 2016.  https://www.nice.org.uk/guidance/cg190/ 

Intrapartum care for healthy women and babies

Reed, R. (2011). Cord blood collection: confessions of a vampire-midwife. Retrieved from Midwife Thinking: http://midwifethinking.com/2011/02/10/cord-blood-collection-confessions-of-a-vampire-midwife/

Resuscitation Council (UK). (2001). Resuscitation at birth, the newborn life support provider course manual (2nd ed.). London, UK: Resuscitation Council (UK).

Richmond, S., & Wyllie, J. (2010). European resuscitation council guidelines for resuscitation 2010. Section 7. Resuscitation of babies at birth. J. Resuscitation , 1389-1399.

Strange, K. (2009). NRP for midwives certification class. Seattle, WA.

Tolosa, J. N., Park, D.-H., Eve, D. J., Klasko, S. K., Borlongan, C. V., & Sanberg, P. R. (2010). Mankind’s first natural stem cell transplant. J. Cell. Mol. Med. , 14 (3), 488-95.

Usher, R., Shephard, M., & Lind, J. (1963). The Blood Volume of the Newborn Infant and Placental Transfusion. Acta Paediatrica – Nurturing the Child , 52 (5), 497-512.

WHO. (1999). Basic newborn resuscitation practical guide – revision. Geneva: World Health Organization Safe Motherhood Unit.

Yao, A., & Lind, J. (1969). Effect of gravity on placental transfusion. The Lancet.

Baby Movements / Fetal Kick-Counts

Awareness of your baby’s movement is an important and non-invasive assessment of fetal well-being.  Basically, activity is reassuring and decrease or cessation is worrisome.  “Kick count” is the counting and tracking of fetal movement – kicks, flutters, swishes, jabs or rolls.  Mothers learn normal patterns for their baby such as sleep cycles, times of activity and triggers.  It’s also a way to bond and connect.

If you’ve been busy or are unsure about movement relax and have a meal, a small glass of juice or some fruit.  Palpate your baby to induce movement.  Pay attention to the movements.  Babies sleep.  If your blood sugar is low then so is your baby’s.  You should feel at least 10 movements over 2 hours (it usually takes much less time), and at least one movement in the first hour.

Keeping a journal of kick counts beginning at 28 weeks provides valuable information.

Instructions

  • Be properly hydrated and fed.
  • Ideally start the kick count at about the same time daily; think of it as a baby-date.
  • Rest when you do the kick counts, by sitting or lying on your left side.
  • Note the date, start time and the time at which the 10th movement takes place.
  • Calculate the total time for 10 movements.
  • Keep notes in the same place to see patterns emerge. Any method works.  Below is an example of a chart and one of a log.

Contact your midwife, doctor, or go to the birth unit at your local hospital immediately if:

  • You have followed the recommendations above and have not felt 10 kicks in 2 hours.
  • There’s a significant change in the pattern over the 3 to 4 days.
  • Your baby has a significant or sudden change in movements.
  • You have concerns.

Example of a Kick Counts Log
Note the date/week of gestation, and start time.  Count or jot down a √ or x for 10 movements.  Note the finish time, and total time.   Keep an eye on patters with the total time.

Week #32
Mon 9:00 XXXXXXXXXX    9:32         Total: 32 min
Tues 12:00 XXXXXXXXXX    12:45     Total: 45 min
Wed 9:00 XXXXXXXXXX    9:55      Total: 55 min
Thurs 9:00 XXXXXXXXXX    9:45      Total: 45 min
Fri 9:30 XXXXXXXXXX    10:05      Total: 35 min
Sat 9:15 XXXXXXXXXX    10:05      Total: 50 min
Sun 10:00 XXXXXXXXXX    14:15      Total: 4 hr, 15 min

Note the significant change in total time.  In this case you would seek medical attention on Sunday.

Kick Count- Blank Tracking Sheet (pdf)

Kick Count Chart – example (pdf)

 

Golden Nuggets for Breastfeeding Early Days

Some little-known gold nuggets for breastfeeding in the first days (you may wish to print this and stick it on the fridge or by your feeding-nest):

  • Breastfeeding may take practise but is designed to work
  • Watch for feeding cues* and offer breast.  Crying is considered a late sign of a stressed babe.
  • Offer one cue, then pause to let babe work it out.  E.g. nipple to baby’s lips, then pause for 5 seconds to allow babe to sort out latch.  If she needs another cue, then give on, pause, and repeat if needed.  Baby is learning too.
  • Babies rest/pause with eyes closed.  If babe stops sucking but stays on breast, let him rest and resume feeding.  He’s likely not actually sleeping, so don’t take him off.  (Sleep test – lift and drop arm.  Sleeping baby’s arm will fall; wake baby’s arm will respond.)
  • You should feel a tug or pull, but no pinching.  Avoid the temptation to feed through a bad latch, no matter how demanding baby is.  Not even once!!  Break the seal (insert pinkie into babe’s mouth) and start again.  Even if it takes 10 tries.
  • Don’t hold baby’s head while feeding.  It may be sore from birth.  Sore or not, the stimulation causes baby to pull back from breast.  Hold head by putting hand on bones at top of neck if necessary.
  • Don’t “pet”, rub, stroke babe while feeding.  Holding and feeding baby is an act of big love in and of itself.  (Imagine if you were trying to enjoy a fine meal, and someone was petting and rubbing you all over.  Ok that might be fun, but not conducive to eating.)
  • After 3-6 weeks the effort of breastfeeding becomes way less than the effort of formula.  Keep going – it gets easier and is worth the early efforts.

Best Start has an excellent 1 page chart for the first days –  feeding guidelines, newborn stomach size, diapers and other info.  Print this!

* Here’s a great graphic to help you identify visual feeding cues.

 

 

Feeding Baby in the First Year

A baby’s nutrition in the first year has life-long effects.  Inadequate nutrition is responsible for more than 35% of child-deaths, and higher rates of illness and developmental delays (World Health Organization, 2009).  Even in affluent North America babies and children are malnourished, often due to misinformation and poor food choices.

Health Canada (2012):  Breastfeeding – exclusively for the first six months, and sustained for two years or longer with appropriate complementary feeding – is important for the nutrition, immunologic protection, growth, and development of infants and toddlers.  Several international health organizations such as UNICEF, WHO, and the American Academy of Pediatrics make the same recommendation. 

Birth to 6 months
Babies should be exclusively breastfed until at least 6 months of age. There are no nutritional benefits to early complimentary feeding, only risks.  Babies who are only partially breastfed (i.e. supplemented with formula or other liquids or solids) in the first 6 months are healthier than those who are not breastfed at all, but risks are significantly higher than in exclusively breastfed babies.

If you think your baby is ready for solids before 6 months then please see section below regarding signs.

Benefits of breastfeeding, i.e. why formula should be used only as medicine
Human breastmilk is uniquely designed for human babies and contains all the required nutrients.   It’s the only thing an infant’s gut is designed to digest and assimilate until at least 6 months of age.  Breastmilk contains substances that augment the immature immune system, and aid in digestion and absorption of nutrients.  Anything else is likely to ferment, lead to gas, colic, poor nutrient absorption (malnourishment), illness and food-allergies.

Babies who are breastfed:

  • Decreased risk of SIDS, less likely to die of other causes in first months
  • Lower rates and severity of diarrhea and pneumonia
  • Lower rates and severity of ear-aches, flu, meningitis, bladder infections, respiratory illness, and other acute infections
  • Decreased risk of childhood leukemia
  • Decreased risk of long term chronic illness such as asthma, diabetes, gastro-intestinal disease (celiac, ulcerative colitis, Crohn’s), cardiovascular disease, obesity
  • Higher cognitive function / greater intelligence

Benefits of breastfeeding to mother include decreased risk of post-partum hemorrhage, breast and ovarian cancers, late-onset diabetes, and heart disease; faster loss of weight gained in pregnancy, and delayed return of fertility (although this is not necessarily a birth-control method).

6 to 12 months
Baby’s weight / size has nothing to do with readiness for solids.  At 6 months a baby’s digestive & immune systems have developed enough to introduce solids.  Earlier is correlated with allergies, digestive problems, immune problems, and obesity.  After 6-8 months caloric and nutrient needs exceed those provided by exclusive breastfeeding.  Further delay of complementary foods may stunt growth.  Start with breastmilk then finish with solids from 6-12 months.  Do encourage – but do not force nor coerce – the baby to eat.

STEP-1:  6 months, or whenever baby shows interest in food (whichever is later)
Offer breast-milk first then finish the meal with solids.  Introduce 1 food at a time for a few days, in small amounts, and then try another.  This helps the caregiver be aware of allergies or intolerances.  Simple, natural, pureed, unprocessed, organic – whole foods, like they came from earth.  There’s no need to buy special baby food – healthy family food, properly prepared, is just fine.

  • 200 kcal/day (in addition to about 400 kcal breastmilk) of mushy or runny foods
  • Offer 30-45 ml (2-3 tbsp) food per feed, at 2-3 meals daily
  • Pureed, raw or lightly cooked, non-citrus fruits e.g. apples, pears, bananas, blueberries
  • Cooked & pureed veggies – start with avocados, roots (carrots, yams, beets) and squashes
  • Cooked whole gluten-free grains (rice, quinoa) or oatmeal
  • Egg -yolks (yolks are usually not an allergen; whites may be)

STEP-2:  7-8 months, or 1 month after beginning step-1 (which-ever is later)
Continue with step-1.  Increase portions gradually up to 125-250 ml (1/2-1 cup) per meal and the following:

  • As child grows used to solids can also offer 1-2 snacks daily
  • Organic meats, pureed
  • Other cooked, pureed veggies
  • Can start combining foods that are tolerated

STEP-3:  8-10 months, or 1 month after beginning step-2 (which-ever is later)
Continue with step-2 and add:

  • 300 kcal/day (in addition to about 400 kcal breastmilk) of mashed food or finely chopped that baby can pick up
  • Offer 125-250 ml (1/2-1 cup) per feed at 3-4 meals daily, and 1-2 snacks if needed
  • Whole eggs
  • More variety

12 months and beyond … or 2 months after beginning step-3 (whichever is later)

  • See general recommendations below
  • Baby can eat regular family foods but watch for allergy or sensitivity
  • 550 kcal daily (in addition to about 350 kcal breastmilk)
  • 175-250 ml (3/4-1 cup) per meal for 3-4 meals daily and 1-2 snacks
  • Continue to breastfeed until 2 years of age

Signs that baby’s ready to start complimentary feeding
Solids can be introduced when baby shows signs of being ready, but only after 6 months of age.  Some babies take longer than 6 months but most are ready for solids by 8 months.

  • 6 to 8 months of age
  • Can sit unsupported
  • Doesn’t automatically push solids out of mouth with tongue (a reflex present until at least 6m in most babies)
  • Willing and able to chew
  • Can pinch or pick up food or other objects between thumb and forefinger
  • Eager to participate in mealtime
  • Shows interest in food – e.g. reaches for food at mealtime, crawls to dog’s dish to steal food
  • Long-term increased need to nurse, unrelated to illness, teething pain, stress or growth spurt
    Note: this is only an indication if other signs are present; not a sign on its own

If baby shows signs before 6 months

Eagerness to engage in mealtimes doesn’t mean ready for solids.  It’s likely a social behaviour rather than a physiological one.  Baby can be included in family mealtimes without eating solid foods.

  • Join the family at mealtime in a lap, booster seat or high chair
  • Give a sippy-cup containing some expressed milk (if baby is more interested in playing with the cup than drinking the contents, you may wish to use water instead of valuable pumped milk)
  • Provide baby-safe cutlery and dishes to play with
  • Give baby an ice cube (baby-safe size & shape) or ice chips to play with
  • Offer a cube, popsicle or slushy frozen breastmilk to eat with a spoon

Food intolerance or sensitivity, allergy
Common allergens include soy, wheat, dairy, peanuts, egg-whites, food colouring, corn, citrus, strawberries, raspberries, kiwis, pork and shellfish.

The following correlate with food intolerance or allergy:  mucous conditions, ear infections, runny nose, rashes (including diaper rash), colic, green stools, digestive issues (diarrhea, constipation, gas, vomiting), undigested food in diaper, asthma, wheezing, and /or behavioural changes after eating given food.

Safety precautions

  • Proper food storage and handling
  • Foods that are choking hazards; can block or wedge into wind-pipe
    • Hard and small sized, smooth / sticky solids g. popcorn, meat chunks meat, hard pieces of fruit / veggies, candies, hot dogs (unless cut lengthwise and cubed), gum, whole nuts and seeds, fruit-pits or seeds, cough drops, raisins, fish-bones, food on toothpicks or skewers.
    • Thick creamy texture e.g. a blob of nut-butter
  • Always supervise infants when they eat or drink
  • Mealtime supervisor should be familiar with baby’s chewing and swallowing abilities
  • Upright and secured position
  • Do not allow baby to eat while laying, running, walking, distracted, nor eat in the car
  • Avoid sharp objects
  • Take an infant / child choking & CPR class to be prepared in case of choking

General Recommendations

  • Organic, whole foods i.e. how they come from nature e.g. baked potato rather than French-fries
  • Purified water, if water is used
  • If juice is used, then fresh & home-made
  • Baby stomach is about the size of her/his fist – portion accordingly, considering breastmilk
  • Take time for eating patiently – meal time should be enjoyable
  • Feed infants directly and assist older children when they feed themselves
  • Feed slowly and patiently, and encourage children to eat, but do not force them
  • Variety of foods
  • Iron fortified food or easily digestible supplement (e.g. Floradix) in case of immediate cord clamping or anemia
  • Whole spectrum salt – Himalayan, Celtic
  • The Kidco Food Mill is a brilliant device for creating baby food on the fly. It’s affordable, simple to use and easy to clean.
  • Ice-cube trays make perfect infant-sized meals – nice to have on hand for child-care or those busy days that run away from us. Puree a few foods and freeze for later use.  Best for 1-3 months in fridge-freezer, and 6 months in chest-freezer.

Avoid

  • Foods that are choking hazards; can block or wedge into wind-pipe (see “Safety”)
  • Common allergens (see intolerance section), foods with family history or allergies, or that baby reacted to in mother’s breastmilk
  • Processed foods – fried, unhealthy fats, high-sugar e.g. chips, crackers, French-fries
  • Chemical additives
    • Fluoridated water, artificial colours & flavours, MSG, aspartame & derivatives
  • Unpasteurized honey, as it may contain spores that can be life-threatening to baby (after 1 year these have no effect on a mature digestive system)
  • Sugary drinks – pop, store-bought fruit-juices
  • Caffeine – coffee, tea, chocolate
  • Under-feeding – babies let us know when they’re hungry (crying, fussing, listless); avoid portion-control as needs change e.g. growth-spurt, immune system fighting a bug
  • Rushing through eating
  • Avoid distractions
  • Strong tastes – spicy, salty, overly sweet
  • No store-bought goat/cow milk until 8-10m of age, and only if child has no sensitivities (but it’s best to avoid non-human milk at all stages of life)

Special Circumstances
In the rare case that a mother is not able to breastfeed her baby, the following options can be considered.  They’re listed in order of healthiest to least.

  1. Pumped mother’s milk, if inability to breastfeed is due to a “mechanical problem” e.g. cleft-palate
  2. Fresh donor milk e.g. close relative, friend in the community (not recommended by public health due to worries about disease transmission)
  3. Frozen human milk from milk-bank
  4. Home-made formula (this is not recommended by public health regions) with added high quality probiotics and fish-oil / ω-3 EFA
  5. Organic formula from a reputable company with added high quality probiotics and fish-oil / ω-3 EFA
  6. Regular store-bought formula with added high quality probiotics and fish-oil / ω-3 EFA

Note: if the inability to breastfeed happens after 6m (e.g. medical problem) then it’s preferable to start on real food and purified water rather than store bought formula (World Health Organization, 2009).

 

References

Gaskin, I. M. (2009). Ina May’s guide to breastfeeding. New York: Bantam Books.

Hass, E. M. (2006). Staying healthy with nutrition. Toronto: Celestial Arts.

Health Canada. (2012). Infant feeding. Retrieved from Health Canada (Government of Canada): http://www.hc-sc.gc.ca/fn-an/nutrition/infant-nourisson/index-eng.php

KellyMom. (2011). Is my baby ready for solid foods? Retrieved from Kelly Mom Parenting & Breastfeeding: http://kellymom.com/nutrition/starting-solids/solids-when/

La Leche Leage International. (2010). The womanly art of breastfeeding. Ballantine Books: New York.

Ochoa, S., & Kline, A. (2011). BIOL404 Chemistry & nutrition student syllabus. SLC: Midwives College of Utah.

Stuebe, A. (2009). The risks of not breastfeeding for mothers and infants. Reviews in Obstetrics & Gynecology , 2 (4), 222-231.

World Health Organization. (2009). Infant and young child feeding – Model Chapter for textbooks for medical students and allied health professionals. Geneva: WHO Press.

Neonatal Resuscitation with Intact Umbilical Cord

NEONATAL RESUSCITATION WITH INTACT UMBILICAL CORD

This paper was published in Midwifery Today, Issue 102, Summer 2012

Click here for video of webinar presented to students at Midwives College of Utah based on this paper.

Abstract

This paper investigates neonatal resuscitation with the umbilical cord intact.  Research confirms numerous immediate and long-term benefits to leaving the cord intact while performing neonatal resuscitation in both term and preterm neonates, while doing no harm.   Current neonatal resuscitation guidelines from around the world are discussed with respect to the cord.  Methods for incorporating an intact cord into standard resuscitation procedures are explored.

Neonatal Resuscitation with Intact Umbilical Cord 

In many birth places, including birth centres, hospitals and home, neonatal resuscitation equipment is set up out of the way of the birth area.  In hospitals, assessment and resuscitation of newborns almost always occurs on a large table across the room and far from mother.  Obviously this requires severing the umbilical cord.  In addition to the physiological advantages of leaving the cord intact, keeping the baby close to mother reduces maternal stress (and surely infant fear too (Strange, 2009)) and helps facilitate bonding (Wright, 2011).  We can do better.  Term and preterm neonates are safer and healthier when neonatal resuscitation includes delayed cord clamping[1].

During pregnancy, the umbilical cord provides oxygen and transfers blood between the placenta and the baby.  Nature has perfectly designed a placental transfusion to carry the blood through the cord and into the newborn baby.  If the cord is intact, then oxygenation continues after birth until the newborn lungs have transitioned to air, a process that takes 30 to 90 seconds in a full-term infant.  If a newborn isn’t breathing independently then the placenta is nature’s neonatal life-support system.   Newborns are not simply tiny adults.  The newborn heart can beat for 20 minutes or longer despite anoxia and the brain can tolerate lack of oxygen for this duration of time (Resuscitation Council (UK), 2001; Frye, 2004; World Health Organization, 1999).  Newborns cope well with hypoxia but struggle with hypovolemia.  At the moment of birth 30 to 50% of the baby’s blood volume is in the placenta.  Immediate clamping deprives the baby of that blood.  Adults are in perilous danger of hypovolemic shock and receive blood transfusions at 15 to 30% blood-loss.

The benefits of delayed clamping are well documented.  Immediate cord clamping is now being compared with blood-letting.  However neonates who are compromised or require resuscitation and desperately need all their blood almost always get their cord severed immediately.  In spite of research saying otherwise, it’s still common practise at most births, usually due to outdated theories or habit.  As more parents request delayed clamping, newborns are more likely to receive their full volume of blood.

As delayed clamping becomes a hot topic there are some aspects that need clarification: time interval, milking the cord, gravity and the myth of causing harm.  “Delayed” isn’t a long time: the rate of transfusion is about half the blood in 1 minute and nearly 100% over the next 2 to 5 minutes.  What about cord stripping?  Parents-to-be may be told that if the cord can’t be left intact then it will be “milked,” implying the benefits are the same.  It’s the time interval of delayed clamping that has clinical benefits, not whether the cord is milked (Fogelson, 2011).

During the first 45 to 60 seconds of life, arterial pressure pumps blood into the neonate, so the height differential between the placenta and baby doesn’t matter.  After that, veins drain blood into the neonate and height matters more.  Full placental transfusion occurs with the baby from 10 centimeters above to 40 centimeters below placenta, which is about the position of baby on mother’s abdomen or lap (Yao & Lind, 1969).

Leaving the umbilical cord intact does not lead to pathological jaundice.  The naturally occurring physiological newborn jaundice has no clinical significance.  Many practitioners believe leaving the cord intact leads to other adverse effects such as tachypnea, grunting, hyperbilirubinemia, polycythemia and hyperviscosity.  If transient these are often not clinically significant issues but rather a normal part of physiological compensation during newborn transition (Tolosa et al., 2010).

Babies with delayed clamping fare better.  They have 40% more blood volume, a 45% increased hematocrit, a 50% increase in red blood cell counts and ferritin is up to 50% higher (Fogelson, 2011).  The benefits are greater in SGA or preterm infants and those born to mothers with low ferritin at birth.  The effects of delayed clamping can be seen well past the newborn period.  Term infants are protected from anaemia and iron deficiency for at least 6 months (Chaparro, Neufeld, Alavez, Cedillo & Dewey, 2006).  This is vital where infant and pediatric anaemia is common, such as impoverished areas.

Mercer et al. (2006) compared data from premature infants that had a 30 to 45 second delay in clamping and intubation, and from those who were immediately clamped and intubated.  There was no statistically significant difference in mortality rates.  The delayed clamping group fared better in common premie health issues, with lower rates of necrotizing enterocolitis, bronchopulmonary dysplasia,  intraventricular haemorrhage (IVH) (14% versus 36%) and sepsis (3% versus 22%).  In addition to the higher rates of IVH, cases were more severe in the early clamping group.  Preterm neonates with delayed cord clamping are less likely to require blood transfusion, ventilation and oxygen therapy, and have lower rates of anaemia at 6 months.  They have more stable blood pressures and thrive better (Asfour & Bewley, 2011).  A 1-minute delay in cord clamping resulted in remarkably elevated red blood cell volume and weekly haematocrit compared to early clamping in neonates of 30 to 36 weeks gestation (Tolosa, Park, Eve, Klasko, Borlongan & Sanberg, 2010).

Of course, if a baby is born flat with a limp, non-pulsing cord then the cord is no longer working.  This is the rare case when immediate clamping and aggressive resuscitation is warranted.

Neonatal resuscitation guidelines in Canada, Australia, Europe and the United Kingdom recommend delayed  clamping for a minimum time range from 1 minute to when the cord stops pulsing in healthy neonates.  These same guidelines cite insufficient evidence to recommend an optimal time of clamping the cord of infants requiring resuscitation.  Not one of them recommends immediate clamping and cutting as part of care, including the American guidelines which say nothing about timing of cord clamping.  The UK and Australian guidelines go so far as to advise waiting 3 minutes in healthy preterm infants for “increased blood pressure during stabilisation, a lower incidence of IVH and fewer blood transfusions” (Resuscitation Council (UK), 2010; Australian Resuscitation Council, 2010).  The UK guidelines also speculate that cord clamping with resuscitation could be delayed until the baby has started breathing.  WHO (1999) advises it’s unnecessary to clamp the cord before beginning resuscitation and to not waste time moving to a special place, as mother’s bed is usually warm and suitable.

The requirements of medicalized neonatal resuscitation are warmth, a firm surface, suction and access to the umbilicus.  Other priorities include comfortable position for staff and the ability to draw umbilical blood for cord-gas analysis.  A warm firm surface can be the bed or surface where baby is born.   In this author’s 2011 poll of 34 midwives from around the world, most reported that they perform resuscitation with the cord intact using the bed, side of a pool designed for water-birth, part of an adult human body (mother or midwife) or a portable board with a warm-pack.

Suction can be from a main hospital line, resuscitation machine or a portable unit such as those used at homebirths.  The umbilicus is accessed to provide drugs and fluids.  If the cord is left intact, then fluids are already being provided.  Drugs are rarely required for resuscitation, and it’s likely they would be required far less often if cords were intact.  Since extensive resuscitation is rarely required can we not be uncomfortable once in awhile, bending over the baby rather than performing resuscitation at our standing height?   Even if one requires cord-gases for medical reasons rather than protection from litigation, they can wait.   Cord-gas results don’t change significantly if taken immediately after birth or after 2 minutes of delayed clamping (De Paco, Florido, Garrido, Prados & Navarrete, 2011; Asfour & Bewley, 2011).

If one prefers a newborn resuscitation table, then there are alternatives to what’s currently being used in most hospitals.  Dr. Andrew Weeks and a team at University of Liverpool designed the award-winning BASICS (Bedside Assessment, Stabilisation and Initial Cardiorespiratory Support) Trolley, a smaller portable neonatal resuscitation table that can be used alongside the mother, even for caesarean birth (University of Liverpool, 2011).  It includes oxygen, suction and heat.  Dr. Weeks says, “It is crazy that the most vulnerable babies are born and whisked off and surrounded by a scrum of doctors” (Wright, 2011).

Many midwives are already doing the good work of leaving cords intact, even for resuscitation.  As further research is available and better equipment is implemented in hospitals, neonatal resuscitation may include nature’s life-line — the full placental transfusion.

 

About the author:  Angie Evans, BSc(Hon), MH is an herbalist, doula and prenatal educator currently enrolled in a Bachelor of Midwifery program.    She’s passionate about the parents’ and baby’s experience of birth and believes good care includes more than simply physical health.   angie@AngieEvans.ca

References

AAP/AHA/CPS. (2006). Neonatal resuscitation textbook (5th ed.). Ottawa: Canadian Paediatric Society.

Alberta Health Services. (2007). Maximum blood draw protocol for pediatric patients.

American Heart Association. (2005, Nov). 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care – Part 13: Neonatal Resuscitation Guidelines. Retrieved Jan 2012, from American Heart Association Journals: http://circ.ahajournals.org/content/112/24_suppl/IV-188.full

Asfour, V., & Bewley, S. (2011). Cord clamping practice could affect the ratio of placental weight to birthweight and perinatal outcomes. BJOG: An International Journal of Obstetrics & Gynaecology,  118 (12), 1539-40.

Australian Resuscitation Council. (2010). Introduction to resuscitation of the newborn infant. Retrieved Feb 2012, from The Australian Resuscitation Council Online: http://www.resus.org.au/

Barret, L. (2008). Resuscitation of the newborn. Retrieved from Homebirth: A Midwife Mutiny: http://www.homebirth.net.au/2008/04/resuscitation-of-newborn.html

Buckley, D. S. (2005). Gentle birth,gentle mothering. Brisbane: One Moon.

Canadian NRP Steering Committee. (2010). Addendum to the NRP provider textbook 6th edition: Recommendations for specific treatment modifications in the Canadian context. Ottawa: Canadian Paediatric Society.

Chaparro, C. M., Neufeld, L. M., Alavez, G. T., Cedillo, R. E.-L., & Dewey, K. G. (2006). Effect of timing of umbilical cord clamping on iron status in Mexican infants: a randomised controlled trial. The Lancet , 367 (9527), 1997-2004.

Crews, C. (2007). Clamping of the umbilical cord – Immediate or delayed. Is this really an issue? Retrieved Feb 2012, from Midwifery Services of South Texas: http://www.midwiferyservices.org/umbilical_cord_clamping.htm

CRYO-CELL International Inc. (2011). Cord blood collection instructions . Florida.

De Paco, C., Florido, J., Garrido, M., Prados, S., & Navarrete, L. (2011). Umbilical cord blood acid-base and gas analysis after early versus delayed cord clamping in neonates at term. Arch Gynecol Obstet , 283 (5), 1011-4.

Fogelson, D. N. (2011). Delayed Cord Clamping Grand Rounds. USC School of Medicine, A.P. Dept. Obstetrics and Gynecology. South Carolina: Palmetto Health Grand Rounds.

Frye, A. (2004). Holistic midwifery, Vol 2, Care during labour and birth. Portland: Labrys.

Greene, A. (2008). How much blood is too much guideline. Retrieved from Dr Greene: http://www.drgreene.com/article/how-much-blood-too-much-guideline

Kattwinkel, et al. (2010). Special Report Neonatal Resuscitation: 2010 AmericanHeart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics , 126 (5), 1400-1413.

Mercer, J. S., Vohr, B. R., McGrath, M. M., Padbury, J. F., Wallach, M., & Oh, W. (2006). Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemmorhage and late onset sepsis; A randomized, controlled trial. Pediatrics , 117 (4), 1235-1242.

Morley, D. G. (2011, July). Neonatal resuscitation: Life that failed. Retrieved Jan 2012, from UBM Medica: http://hcp.obgyn.net/fetal-monitoring/content/article/1760982/1911275

Reed, R. (2011). Cord blood collection: confessions of a vampire-midwife. Retrieved from Midwife Thinking: http://midwifethinking.com/2011/02/10/cord-blood-collection-confessions-of-a-vampire-midwife/

Resuscitation Council (UK). (2010). Newborn life support guidelines. London: Resuscitation Council (UK).

Resuscitation Council (UK). (2001). RESUSCITATION AT BIRTH, The Newborn Life Support Provider Course Manual (2nd ed.). London, UK: Resuscitation Council (UK).

Richmond, S., & Wyllie, J. (2010, Aug). European Resuscitation Council guidelines for resuscitation 2010. Section 7. Resuscitation of babies at birth. J. Resuscitation , 1389-1399.

SOGC. (2012, Feb). Clinical Practice Guidelines. Retrieved Feb 2012, from SOGC (Society of Obstetricians and Gynaecologists of Canada): http://www.sogc.org/guidelines/index_e.asp

Strange, K. (2009, Jan). NRP for midwives certification class. Seattle, WA.

Tolosa, J. N., Park, D.-H., Eve, D. J., Klasko, S. K., Borlongan, C. V., & Sanberg, P. R. (2010). Mankind’s first natural stem cell transplant. J. Cell. Mol. Med. , 14 (3), 488-95.

University of Liverpool. (2011, June). City experts develop life-saving trolley for newborn babies. Retrieved Nov 2011, from University of Liverpool University News: https://news.liv.ac.uk/2011/06/17/city-experts-develop-life-saving-trolley-for-newborn-babies/

Usher, R., Shephard, M., & Lind, J. (1963). The blood volume of the newborn infant and placental transfusion. Acta Paediatrica – Nurturing the Child , 52 (5), 497-512.

Weaver, P., & Evans, S. (2007). Practical skills guide for midwifery (4th ed.). Wasilla, AK: Morningstar

WHO. (1999). Basic newborn resuscitation practical guide – Revision. Geneva: World health Organization Safe Motherhood Unit.

Wright, A. (2011, June). BASICS: Bedside Assessment, Stabilisation and Initial Cardiorespiratory Support. Retrieved Feb 2012, from Liverpool Women’s NHS Foundation Trust: http://www.lw.nhs.uk/Library/news_centre/Life_Saving_Trolley_Basics_Case_Study.pdf

Yao, A., & Lind, J. (1969, Sep). Effect of gravity on placental transfusion. The Lancet .

[1] Clamping refers to clamping and/or cutting the umbilical cord.  Clamping, whether cut or not, immediately halts placental transfusion.  Clients who ask for delayed cord-cutting could be counselled to request delayed clamping.